The Role of Physical Parameterizations on the Numerical Weather Prediction: Impact of Different Cumulus Schemes on Weather Forecasting on Complex Orographic Areas

Author:

Castorina GiuseppeORCID,Caccamo Maria TeresaORCID,Colombo Franco,Magazù Salvatore

Abstract

Numerical weather predictions (NWP) play a fundamental role in air quality management. The transport and deposition of all the pollutants (natural and/or anthropogenic) present in the atmosphere are strongly influenced by meteorological conditions such as, for example, precipitation and winds. Furthermore, the presence of particulate matter in the atmosphere favors the physical processes of nucleation of the hydrometeors, thus increasing the risk of even extreme weather events. In this framework of reference, the present work aimed to improve the quality of weather forecasts related to extreme events through the optimization of the weather research and forecasting (WRF) model. For this purpose, the simulation results obtained using the WRF model, where physical parametrizations of the cumulus scheme can be optimized, are reported. As a case study, we considered the extreme meteorological event recorded on 25 November 2016, which affected the whole territory of Sicily and, in particular, the area of Sciacca (Agrigento). In order, to evaluate the performance of the proposed approach, we compared the WRF model outputs with data obtained by a network of radar and weather stations. The comparison was performed through statistical methods on the basis of a “contingency table”, which allowed for ascertaining the best suited physical parametrizations able to reproduce this event.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference39 articles.

1. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches

2. Rüchardt’s experiment treated by Fourier transform

3. A new approach to the adiabatic piston problem through the arduino board and innovative frequency analysis procedures;Castorina,2018

4. Regional Models of the Atmosphere in Middle Latitudes

5. Mid-Latitude Synoptic Meteorology;Lackman,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3