Simulation of the Dynamic and Thermodynamic Structure and Microphysical Evolution of a Squall Line in South China

Author:

Li Jingyuan,Su Yang,Ping FanORCID,Tang Jiahui

Abstract

A squall line that occurred in south China on 31 March 2014 was simulated with the Weather Research and Forecasting model. The microphysical processes had an important influence on the dynamic and thermodynamic structure of the squall line. The process of water vapor condensation (PCC+) provided heat for the ascending movement inside the squall line. The forward movement of the heating area of PCC+ was an important reason for the squall line’s tilting. The convergence of the outflow of the cold pool and the warm and wet air constantly triggered new convection cells in the front of the cold pool, which made the squall line propagate forwards. The cooling process of graupel melting into rain corresponded closely with the rear inflow jet. During the mature period of the squall line, the effect of cooling strengthened the rear inflow jet. This promoted low-layer inflow and a convective ascending motion, thus further promoting the development of the squall line system. During the decay period, the strong backflow center of the stratospheric region cut off the forward inflow of the middle and low layer towards the high layer, and cooperated with the cold pool to cut off the warm and wet air transport of the low layer, making the system decline gradually.

Funder

The National Basic Research Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3