Analysis of the Precipitable Water Vapor Observation in Yunnan–Guizhou Plateau during the Convective Weather System in Summer

Author:

Hu Heng,Cao Yunchang,Shi Chuang,Lei Yong,Wen Hao,Liang Hong,Tu Manhong,Wan Xiaomin,Wang Haishen,Liang Jingshu,Zhao Panpan

Abstract

The ERA5 reanalysis dataset of the European Center for Medium-Range Weather Forecasts (ECMWF) in the summers from 2015 to 2020 was used to compare and analyze the features of the precipitable water vapor (PWV) observed by six ground-based Global Navigation Satellite System (GNSS) meteorology (GNSS/MET) stations in the Yunnan–Guizhou Plateau. The correlation coefficients of the two datasets ranged between 0.804 and 0.878, the standard deviations ranged between 4.686 and 7.338 mm, and the monthly average deviations ranged between −4.153 and 9.459 mm, which increased with the altitude of the station. Matching the quality-controlled ground precipitation data with the PWV in time and space revealed that most precipitation occurred when the PWV was between 30 and 65 mm and roughly met the normal distribution. We used the vertical integral of divergence of moisture flux (∇p) and S-band Doppler radar networking products combined with the PWV to study the convergence and divergence process and the water vapor delivery conditions during the deep convective weather process from August 24 to 26, 2020, which can be used to analyze the real-time observation capability and continuity of PWV in small-scale and mesoscale weather processes. Furthermore, the 1 h precipitation and the cloud top temperature (ctt) data at the same site were used to demonstrate the effect of PWV on the transit of convective weather systems from different time–space scales.

Funder

National Natural Science Foundation of China

Observation Experiment Project of Meteorological Observation Center of China Meteorological Administration

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference59 articles.

1. Earth's Annual Global Mean Energy Budget

2. Water Vapor Feedback and Global Warming

3. Satellite observations of the water vapor greenhouse effect and column longwave cooling rates: Relative roles of the continuum and vibration-rotation to pure rotation bands;Anand;J. Geophys. Res. Atmos.,2004

4. Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering

5. Earth's Global Energy Budget

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3