The Impact of Utility-Scale Photovoltaics Plant on Near Surface Turbulence Characteristics in Gobi Areas

Author:

Jiang JunxiaORCID,Gao XiaoqingORCID,Chen Bolong

Abstract

With the rapid deployment of utility-scale photovoltaic (PV) plants, the impact of PV plants on the environment is a new concern of the scientific and social communities. The exchange of sensible and latent heat energy and mass between land and air in PV plants is crucial to understanding its impact. It is known that the near surface turbulence characteristics rule the exchange. Therefore, it is essential for understanding the impact to study the characteristics of near surface turbulence. However, it is not well recognized. Turbulent fluxes and strength characteristics for the PV plant and the adjacent reference site in the Xinjiang Gobi area were investigated in this study. Various surface layer parameters including friction velocity, stability parameter, momentum flux, and turbulent flux were calculated using eddy correlation system. Results indicate that compared to the reference site, near the surface boundary layer was more unstable during the daytime due to the stronger convection heating, while it was more stable at night in the PV plant. In the PV plant, Iu was weakened and Iv was strengthened during the daytime, and Iu and Iv were all weakened at night, while Iw was strengthened across the whole day. The significant difference between Iu and Iv in the PV plant indicated that the horizontally turbulence strengths were affected by the plant layout. The turbulent kinetic energy of the PV plant was lower than the reference site and the momentum in the PV plant was higher than the reference site, especially during the daytime. Compared to the reference site, the PV plant had a higher sensible heat flux and less latent heat flux. The turbulent components of wind followed the 1/3 power law in the unstable conditions and stable conditions in the PV plant and the reference site.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3