Characteristics of Enhanced Heatwaves over Tanzania and Scenario Projection in the 21st Century

Author:

Gyilbag Amatus,Amou Martial,Tulcan Roberto Xavier SupeORCID,Zhang Lei,Demelash Tsedale,Xu Yinlong

Abstract

Extreme hot temperature is dangerous to the bioeconomy, and would worsen with time. Ambient heatwaves accompanied by unusual droughts are major threats to poverty eradication in Tanzania. Due to sparsity of observation data and proper heatwave detection metrics, there has been a paucity of knowledge about heatwave events in Tanzania. In this study, the Heatwave Magnitude Index daily (HWMId) was adopted to quantitatively analyze heatwave characteristics throughout Tanzania at mid-21st century (2041–2070) and end of 21st century (2071–2100), relative to the reference period (1983–2012) using the CHIRTS-daily quasi-global high-resolution temperature dataset and climate simulations from a multi-modal ensemble of median scenarios (RCP4.5, from CORDEX-Africa). The results showed that moderate to super-extreme heatwaves occurred in Tanzania between 1983 and 2012, particularly in 1999, when ultra-extreme heatwaves (HWMId > 32) occurred in the Lake Victoria basin. It is projected that by mid-21st century, the upper category of HWMId would be hotter and longer, and would occur routinely in Tanzania. The spatial extent of all of the HWMId categories is projected to range from 34% to 73% by the end of the 21st century with a duration of 8 to 35 days, compared to 1 to 5 days during the reference period. These findings will contribute to increasing public awareness of the need for adaptation.

Funder

UK GCRF project of Development Corridors Partnership

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference92 articles.

1. An adaptability limit to climate change due to heat stress

2. Rapid Agriculture Needs Assessment in Response to the ‘El-Niño’ Effects in the United Republic of Tanzania,2016

3. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

4. A decade of weather extremes

5. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3