A New Methodology for Assessing the Interaction between the Mediterranean Olive Agro-Forest and the Atmospheric Surface Boundary Layer

Author:

Jiménez-Portaz María,Clavero MaríaORCID,Losada Miguel ÁngelORCID

Abstract

Historically, the olive grove has been one of the most emblematic ecosystems in Mediterranean countries. Currently, in Andalusia, Spain, the land under olive grove cultivation exceeds 1.5 million hectares, approximately 17% of the regional surface. Its exploitation has traditionally been based on the use of the available land and heterogeneous plantations, with different species adapted to southern Mediterranean climatic conditions, and to the management of the traditional olive cultivation culture. The objective of this work is to characterize the mechanical behavior of the atmospheric surface boundary layer (SBL) (under neutral stability) interacting with different olive grove configurations. Experimental tests were carried out in the Boundary Layer Wind Tunnel (BLWT) of the Andalusian Institute for Earth System Research (IISTA), University of Granada. Three representative configurations of olive groves under neutral atmospheric conditions were tested. The wind flow time series were recorded at several distances and heights downwind the olive plantation models with a cross hot wire anemometry system. Herein, this paper shows the airflow streamwise, including the mean flow and the turbulent characteristics. The spatial variability of these two mechanical magnitudes depends on, among others, the size, the agro-forest length, the layout of the tree rows, the porosity, the tree height, the crown shape and the surface vegetation cover. The aerodynamic diameter and Reynolds number for each agro-forest management unit are proposed as representative variables of the system response, as these could be related to olive grove management. The plantation, in turn, conforms to a windbreak, which affects the microclimate and benefits the elements of the ecosystem. Detailed knowledge of these variables and the interaction between the ecosystem and the atmosphere is relevant to optimize the resources management, land use and sustainability of the overall crop. Thus, this paper presents preliminary work to relate atmospheric variables to environmental variables, some of which could be humidity, erosion, evapotranspiration or pollen dispersion.

Funder

Universidad de Granada

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference43 articles.

1. El olivar en Andalucía: Lecciones para el Futuro de un Cultivo Milenario;Guzmán-Álvarez,2009

2. Impact of Climate Change on Olive Crop Production in Italy

3. Sostenibilidad de la Producción de Olivar en Andalucía;Gómez,2009

4. Net ecosystem CO 2 exchange in an irrigated olive orchard of SE Spain: Influence of weed cover

5. Practical Meteorology: An Algebra Based Survey of Atmospheric Science;Stull,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications in Wind Tunnel Technology;Principles and Applications of Dimensional Analysis and Similarity;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3