The Role of Aging and Wind in Inducing Death and/or Growth Reduction in Korean Fir (Abies Koreana Wilson) on Mt. Halla, Korea

Author:

Seo Jeong-Wook,Choi En-Bi,Park Jun-Hui,Kim Yo-Jung,Lim Hyo-In

Abstract

The purpose of this study was to investigate the role of strong winds and aging in the death and/or decline in the growth of Korean fir on Mt. Halla in Korea. Bangeoreum (BA-S), Jindalrebat (JD-E), and Youngsil (YS-W) on the southern, eastern, and western slopes of Mt. Halla (ca. 1600 and 1700 m a.s.l.) were selected for the study. The site chronologies were established using more than 10 living Korean firs at each site. Additionally, to date the years and seasons of death of standing/fallen dead Korean firs, 15/15, 14/15, and 10/10 trees were selected at BA-S, JD-E, and YS-W, respectively. After adjusting the age with the period of growth up to the sampling point, the oldest Korean fir found among the living trees was 114 years old at JD-E and the oldest fir among the dead trees was 131 years old at JD-E. Besides this, most of the trees at BA-S and JD-E were found to have died between 2008 and 2015, and at irregular intervals between 1976 and 2013 at YS-W. Also, the maximum number of trees, that is, 62.7% died between spring and summer, followed by 20.9% between summer and autumn, and 16.4% between autumn of the current year and spring of the following year. Abrupt growth reductions occurred at BA-S and JD-E, and have become more significant in recent years, whereas at YS-W, the abrupt growth reduction and recovery occur in a cyclic order. The intensity and frequency of the typhoons increased from 2012, and this trend was in-line with the increased number of abrupt growth reductions at BA-S and JD-E. Therefore, the typhoons of 2012 are considered as the most likely influencing factor in death and/or growth reduction in Korean firs. In contrast, the decline in the growth of the Korean firs located on the windward slope (YS-W) showed a relationship with winds stronger than 25–33 m/s.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3