The Modulation Effect on the ELVEs and Sprite Halos by Concentric Gravity Waves Based on the Electromagnetic Pulse Coupled Model

Author:

Wang Chao,Wen Ying,Zhang Jinbo,Zhang Qilin,Qiu Juwei

Abstract

By employing the finite-difference time-domain method, the processes of electric field variation and morphological development of the optical radiation field of ELVEs and sprite halos were simulated in this article. Simulations of ELVEs show two optical radiation field centers, with a concentrated luminous zone from 85 to 100 km and an inner weaker optical radiation center. The electric field exhibits an obvious sparse and dense ripple pattern induced by the concentric gravity waves (CGWs) at altitudes of 90–100 km, which mainly occurs during the decline period of electric field with a shallow steepness. The alternating distance of the variations in the sparse and dense patterns is about 40 km, which corresponds to the horizontal wavelength of the electric field. The CGWs induce significant deformation of the inner optical radiation field, even splitting into multiple luminous regions. Simulations of sprite halos indicate that the horizontal range of the electrical field generated by lightning current is within 50 km, and a strong local electric field formed in the region right above the lightning channel is due to the small-scale breakdown current. Thus, the increased electron density shields the upper regions and reduces the electrical field’s strength. The sprite halos luminous zone is pancake-shaped, and it originates at 85 km along with a downward developing trend. The disturbance of sprite halos’ luminescence caused by CGWs mainly occurs at about 80–100 km directly above the lightning channel, and the primary deformation zone is located within 30 km of the lightning channel, which is also the region with the most recognizable electric field disturbance.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3