Potential Human and Plant Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components and Meteorological Parameters

Author:

Romano SalvatoreORCID,Fragola MattiaORCID,Alifano Pietro,Perrone Maria Rita,Talà Adelfia

Abstract

A preliminary local database of potential (opportunistic) airborne human and plant pathogenic and non-pathogenic species detected in PM10 samples collected in winter and spring is provided, in addition to their seasonal dependence and relationships with meteorological parameters and PM10 chemical species. The PM10 samples, collected at a Central Mediterranean coastal site, were analyzed by the 16S rRNA gene metabarcoding approach, and Spearman correlation coefficients and redundancy discriminant analysis tri-plots were used to investigate the main relationships. The screening of 1187 detected species allowed for the detection of 76 and 27 potential (opportunistic) human and plant pathogens, respectively. The bacterial structure of both pathogenic and non-pathogenic species varied from winter to spring and, consequently, the inter-species relationships among potential human pathogens, plant pathogens, and non-pathogenic species varied from winter to spring. Few non-pathogenic species and even fewer potential human pathogens were significantly correlated with meteorological parameters, according to the Spearman correlation coefficients. Conversely, several potential plant pathogens were strongly and positively correlated with temperature and wind speed and direction both in winter and in spring. The number of strong relationships between presumptive (human and plant) pathogens and non-pathogens, and meteorological parameters slightly increased from winter to spring. The sample chemical composition also varied from winter to spring. Some potential human and plant pathogens were correlated with chemicals mainly associated with marine aerosol and/or with soil dust, likely because terrestrial and aquatic environments were the main habitats of the detected bacterial species. The carrier role on the species seasonal variability was also investigated.

Funder

Istituto Nazionale di Fisica Nucleare

Ministero dell’Istruzione, dell’Università e della Ricerca

Regione Puglia

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3