Abstract
Rip currents are strong water channels flowing away from the shoreline. They can occur on any shore with breaking waves. Rip currents play a significant role in changing the topography of shallow water regions by transporting large amounts of bed material offshore. Moreover, they pose a significant danger for people living in nearshore zones and surfers and cause hundreds of deaths annually worldwide. Therefore, rip current generation characteristics have been investigated to prevent casualties. In this study, a GPS drifter survey was chosen as the investigation method; however, a few drawbacks were discovered, such as low accuracy due to the GPS drifter becoming trapped in the surf zone. Therefore, drones and dyes were used to overcome the drawbacks of drifter methods. The results of dye tracking and the 3D wave-induced current numerical simulation were compared; the velocity and formation of the rip current were found to be relatively similar. With the technological advancements and invention of new survey equipment, the survey techniques also evolve, and this paper shows that the disadvantages of the GPS-based Lagrangian method can be overcome using a dye-mounted drone, which observes the rip current easily and accurately.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献