Abstract
The reflectivity (Z)—rain rate (R) model has not been tested on single polarization radar for estimating monsoon rainfall in Southeast Asia, despite its widespread use for estimating heterogeneous rainfall. The artificial neural network (ANN) regression has been applied to the radar reflectivity data to estimate monsoon rainfall using parametric Z-R models. The 10-min reflectivity data recorded in Kota Bahru radar station (in Malaysia) and hourly rain record in nearby 58 gauge stations during 2013–2015 were used. The three-dimensional nearest neighbor interpolation with altitude correction was applied for pixel matching. The non-linear Levenberg Marquardt (LM) regression, integrated with ANN regression minimized the spatiotemporal variability of the proposed Z-R model. Results showed an improvement in the statistical indicator, when LM and ANN overestimated (6.6%) and underestimated (4.4%), respectively, the mean total rainfall. For all rainfall categories, the ANN model has a positive efficiency ratio of >0.2.
Funder
Ministry of Higher Education, Malaysia, Fundamental Research Grant Scheme
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献