Research on Monthly Precipitation Prediction Based on the Least Square Support Vector Machine with Multi-Factor Integration

Author:

Lei Jingchun,Quan Quan,Li Pingzhi,Yan Denghua

Abstract

Accurate precipitation prediction is of great significance for regional flood control and disaster mitigation. This study introduced a prediction model based on the least square support vector machine (LSSVM) optimized by the genetic algorithm (GA). The model was used to estimate the precipitation of each meteorological station over the source region of the Yellow River (SRYE) in China for 12 months. The Ensemble empirical mode decomposition (EEMD) method was used to select meteorological factors and realize precipitation prediction, without dependence on historical data as a training set. The prediction results were compared with each other, according to the determination coefficient (R2), mean absolute errors (MAE), and root mean square error (RMSE). The results show that sea surface temperature (SST) in the Niño 1 + 2 region exerts the largest influence on accuracy of the prediction model for precipitation in the SRYE (RSST2= 0.856, RMSESST= 19.648, MAESST= 14.363). It is followed by the potential energy of gravity waves (Ep) and temperature (T) that have similar effects on precipitation prediction. The prediction accuracy is sensitive to altitude influences and accurate prediction results are easily obtained at high altitudes. This model provides a new and reliable research method for precipitation prediction in regions without historical data.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3