High Ethylene and Propylene in an Area Dominated by Oil Production

Author:

Lyman Seth N.ORCID,Holmes Makenzie L.,Tran Huy N. Q.,Tran Trang,O’Neil Trevor

Abstract

We measured the spatial distribution and composition of ozone-forming hydrocarbons, alcohols, and carbonyls in Utah’s Uinta Basin during the winter months of 2019 and 2020. The Uinta Basin contains about 10,000 producing oil and gas wells. Snow cover and the region’s unique topography (i.e., a large basin entirely surrounded by mountains) promote strong, multi-day temperature inversion episodes that concentrate pollution and lead to wintertime ozone production. Indeed, organic compound concentrations were about eight times higher during inversion episodes than during snow-free springtime conditions. We examined spatial associations between wintertime concentrations of organics and oil and gas sources in the region, and we found that concentrations of highly reactive alkenes were higher in areas with dense oil production than in areas with dense gas production. Total alkene+acetylene concentrations were 267 (42, 1146; lower and upper 95% confidence limits) µg m−3 at locations with 340 or more producing oil wells within 10 km (i.e., 75th percentile) versus 12 (9, 23) µg m−3 at locations with 15 or fewer oil wells (i.e., 25th percentile). Twenty-eight percent of the potential for organic compounds to produce ozone was due to alkenes in areas with dense oil production. Spatial correlations and organic compound ratios indicated that the most likely source of excess alkenes in oil-producing areas was natural gas-fueled engines, especially lean-burning (i.e., high air:fuel ratio) artificial lift engines.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3