Spectra of Acoustic-Gravity Waves in the Atmosphere with a Quasi-Isothermal Upper Layer

Author:

Kshevetskii Sergey P.ORCID,Kurdyaeva Yuliya A.ORCID,Gavrilov Nikolai M.ORCID

Abstract

In this paper, we study, in theoretical terms, the structure of the spectrum of acoustic-gravity waves (AGWs) in the nonisothermal atmosphere having asymptotically constant temperature at high altitudes. A mathematical problem of wave propagation from arbitrary initial perturbations in the half-infinite nonisothermal atmosphere is formulated and analyzed for a system of linearized hydrodynamic equations for small-amplitude waves. Besides initial and lower boundary conditions at the ground, wave energy conservation requirements are applied. In this paper, we show that this mathematical problem belongs to the class of wave problems having self-adjoint evolution operators, which ensures the correctness and existence of solutions for a wide range of atmospheric temperature stratifications. A general solution of the problem can be built in the form of basic eigenfunction expansions of the evolution operator. The paper shows that wave frequencies considered as eigenvalues of the self-adjoint evolution operator are real and form two global branches corresponding to high- and low-frequency AGW modes. These two branches are separated since the Brunt–Vaisala frequency is smaller than the acoustic cutoff frequency at the upper boundary of the model. Wave modes belonging to the low-frequency global spectral branch have properties of internal gravity waves (IGWs) at all altitudes. Wave modes of the high-frequency spectral branch at different altitudes may have properties of IGWs or acoustic waves depending on local stratification. The results of simulations using a high-resolution nonlinear numerical model confirm possible changes of AGW properties at different altitudes in the nonisothermal atmosphere.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3