Aerosol Layering in the Free Troposphere over the Industrial City of Raciborz in Southwest Poland and Its Influence on Surface UV Radiation

Author:

Fernandes AlnilamORCID,Pietruczuk Aleksander,Szkop ArturORCID,Krzyścin Janusz

Abstract

Atmospheric aerosol and ultraviolet index (UVI) measurements performed in Racibórz (50.08° N, 18.19° E) were analyzed for the period June–September 2019. Results of the following observations were taken into account: columnar characteristics of the aerosols (aerosol thickness, Angstrom exponent, single scattering albedo, asymmetry factor) obtained from standard CIMEL sun-photometer observations and parameters of aerosol layers (ALs) in the free troposphere (the number of layers and altitudes of the base and top) derived from continuous monitoring by a CHM-15k ceilometer. Three categories of ALs were defined: residues from the daily evolution of the planetary boundary layer (PBL) aerosols, from the PBL-adjacent layer, and from the elevated layer above the PBL. Total column ozone measurements taken by the Ozone-Monitoring Instrument on board NASA’s Aura satellite completed the list of variables used to model UVI variability under clear-sky conditions. The aim was to present a hybrid model (radiative transfer model combined with a regression model) for determining ALs’ impact on the observed UVI series. First, a radiative transfer model, the Tropospheric Ultraviolet–Visible (TUV) model, which uses typical columnar characteristics to describe UV attenuation in the atmosphere, was applied to calculate hypothetical surface UVI values under clear-sky conditions. These modeled values were used to normalize the measured UVI data obtained during cloudless conditions. Next, a regression of the normalized UVI values was made using the AL characteristics. Random forest (RF) regression was chosen to search for an AL signal in the measured data. This explained about 55% of the variance in the normalized UVI series under clear-sky conditions. Finally, the UVI values were calculated as the product of the RF regression and the relevant UVIs by the columnar TUV model. The root mean square error and mean absolute error of the hybrid model were 1.86% and 1.25%, respectively, about 1 percentage point lower than corresponding values derived from the columnar TUV model. The 5th–95th percentile ranges of the observation/model differences were [−2.5%, 2.8%] and [−3.0%, 5.3%] for the hybrid model and columnar TUV model, respectively. Therefore, the impact of ALs on measured surface UV radiation could be demonstrated using the proposed AL characteristics. The statistical analysis of the UVI differences between the models allowed us to identify specific AL configuration responsible for these differences.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3