Anabatic Flow along a Uniformly Heated Slope Studied through Large-Eddy Simulation

Author:

Cintolesi CarloORCID,Di Santo DarioORCID,Barbano FrancescoORCID,Di Sabatino SilvanaORCID

Abstract

Anabatic flows are common phenomena in the presence of sloping terrains, which significantly affect the dynamics and the exchange of mass and momentum in the low-atmosphere. Despite this, very few studies in the literature have tackled this topic. The present contribution addresses this gap by utilising high-resolved large-eddy simulations for investigating an anabatic flow in a simplified configuration, commonly used in laboratory experiments. The purpose is to analyse the complex thermo-fluid dynamics and the turbulent structures arising from the anabatic flow near the slope. In such a flow, three main dynamic layers are identified and reported: the conductive layer close to the surface, the convective layer where the most energetic motion develops, and the outer region, which is almost unperturbed. The analysis of instantaneous fields reveals the presence of thermal plumes, which are stable turbulent structures enhancing vertical transport and mixing of momentum and temperature. Such structures are generated by thermal instabilities in the conductive layer that trigger the rise of the plumes above them. Their evolution along the slope is described, identifying three regions responsible for the plumes generation, stabilisation, and merging. To the best of the authors’ knowledge, this is the first numerical experiment describing the along-slope behaviour of the thermal plumes in the convective layer.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3