Estimating the CMIP6 Anthropogenic Aerosol Radiative Effects with the Advantage of Prescribed Aerosol Forcing

Author:

Shi XiangjunORCID,Li Chunhan,Li Lijuan,Zhang Wentao,Liu Jiaojiao

Abstract

The prescribed anthropogenic aerosol forcing recommended by Coupled Model Intercomparison Project Phase 6 (CMIP6) was implemented in an atmospheric model. With the reduced complexity of anthropogenic aerosol forcing, each component of anthropogenic aerosol effective radiative forcing (ERF) can be estimated by one or more calculation methods, especially for instantaneous radiative forcing (RF) from aerosol–radiation interactions (RFari) and aerosol–cloud interactions (RFaci). Simulation results show that the choice of calculation method might impact the magnitude and reliability of RFari. The RFaci—calculated by double radiation calls—is the definition-based Twomey effect, which previously was impossible to diagnose using the default model with physically based aerosol–cloud interactions. The RFari and RFaci determined from present-day simulations are very robust and can be used as offline simulation results. The robust RFari, RFaci, and corresponding radiative forcing efficiencies (i.e., the impact of environmental properties) are very useful for analyzing anthropogenic aerosol radiative effects. For instance, from 1975 to 2000, both RFari and RFaci showed a clear response to the spatial change of anthropogenic aerosol. The global average RF (RFari + RFaci) has enhanced (more negative) by ~6%, even with a slight decrease in the global average anthropogenic aerosol, and this can be explained by the spatial pattern of radiative forcing efficiency.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3