A Cluster Analysis of Forward Trajectory to Identify the Transport Pathway of Salt-Dust Particles from Dried Bottom of Aral Sea, Central Asia

Author:

Aili AishajiangORCID,Abuduwaili JililiORCID,Xu Hailiang,Zhao Xinfeng,Liu Xinghong

Abstract

The Aral Sea basin is the most active source of salt-dust storms in the central Asian region, while its exposed bottom is acting as a “distributer” of salts and chemicals over the adjoining areas. In this study, the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT-4) is used to identify the trajectories of air parcels from the dried bottom of the Aral Sea region (45.40° N, 61.30° E) that are potentially containing salt-dust and their probability of influencing the downwind area in the period of 2016–2020. The frequency of air parcel trajectory was mapped for six levels: 100, 300, 500, 1000, 2000, and 3000 m agl. The trajectories were categorized by k-means clustering into four clusters that are named by their direction of movement as follows: Cluster 1: E category, Cluster 2: NE category, Cluster 3: W category, and the Cluster 4: S category. The 72 h of forward trajectories showed that salt-dust storms starting from the dried bottom of the Aral Sea had the highest probability of affecting the northeastern region e.g., Siberian Plain, followed by the southern region e.g., Iran Plateau. Total number of trajectories within these two clusters (NE and S) accounts for 90% (or 413 days) of trajectories in examined days. The main area of influence of salt-dust is close to the source area. The potential transport distance of salt-dust particles increases with the height of the starting point. The surface wind, which results from the changes of the Siberian High (SH), has a major role in shaping the surface atmospheric circulation which determines the transport pathway of salt-dust particles over the Aral Sea region. The results of this study could be useful to forecast the potential occurrence of salt-dust storms in downwind affected areas and would also be helpful to understand the possible causes of salt-dust storms which can provide the scientific basis for mitigation of the negative impact of salt-dust storms on the environment and human health. Further research should be conducted by using monitoring data to confirm the deposition of dust and salt particles in those areas mapped by our study.

Funder

Western Light Foundation of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference31 articles.

1. Severe dust storms in Central Asia

2. Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia;Xin;J. Geophys. Res.,2016

3. Dust deposition in the Aral Sea: implications for changes in atmospheric circulation in central Asia during the past 2000 years

4. Does the Aral sea merit heritage status?

5. The Aral crisis: Causative factors and means of solution (Aral’skiy krizis: Prichiny vozniknoveniya i put’ vykhoda);Glazovskiy,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3