Abstract
Precipitation extremes such as heavy rainfall and floods are of great interest for climate scientists, particularly for small islands vulnerable to weather phenomena such as hurricanes. In this study, we investigated the spatio-temporal evolution of extreme rainfall over Cuba from 1980 to 2019, separating the dry and rainy periods. In addition, a ranking of extreme precipitation events was performed, which provides the number of events, the area affected, and a ranking of their magnitude by considering the magnitude of anomalies. The analysis was conducted using daily data from the multi-source weighted-ensemble precipitation (MSWEPv2). In determining the extreme precipitation ranking, the daily extreme precipitation anomaly was calculated with respect to the 95th percentile climatological distribution, giving a measure of the rarity of the event for each day and each grid point. For a more detailed analysis regarding the ranking, a separation was made by regions applying the K-mean methodology. The months belonging to the rainy period of the year presented the highest amount of precipitation above the 95th percentile compared to results obtained for the dry period. Of the six months belonging to the cyclonic season, in five of them Cuba was affected, directly or indirectly, by a tropical cyclone. The years 1982–83 and 1998 presented the highest-ranking value for the dry and rainy periods, respectively. Moreover, a trend analysis revealed an increase in the trend of occurrence of extreme events and a decrease in the percentage of the area affected. The analysis by regions showed a similar behavior to that carried out for all of Cuba. It was found that the warm phase of the ENSO events influenced approximately ~22% of the occurrence of extreme events for both periods.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献