Abstract
Tropical Storm Imelda struck the southeast coastal regions of Texas from 17–19 September, 2019, and delivered precipitation above 500 mm over about 6000 km2. The performance of the three IMERG (Early-, Late-, and Final-run) GPM satellite-based precipitation products was evaluated against Stage-IV radar precipitation estimates. Basic and probabilistic statistical metrics, such as CC, RSME, RBIAS, POD, FAR, CSI, and PSS were employed to assess the performance of the IMERG products. The products captured the event adequately, with a fairly high POD value of 0.9. The best product (Early-run) showed an average correlation coefficient of 0.60. The algorithm used to produce the Final-run improved the quality of the data by removing systematic errors that occurred in the near-real-time products. Less than 5 mm RMSE error was experienced in over three-quarters (ranging from 73% to 76%) of the area by all three IMERG products in estimating the Tropical Storm Imelda. The Early-run product showed a much better RBIAS relatively to the Final-run product. The overall performance was poor, as areas with an acceptable range of RBIAS (i.e., between −10% and 10%) in all the three IMERG products were only 16% to 17% of the total area. Overall, the Early-run product was found to be better than Late- and Final-run.
Funder
Army Research Office
University of Texas at San Antonio
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference75 articles.
1. U.S. Billion-Dollar Weather and Climate Disasters, 1980–Present (NCEI Accession 0209268); NOAA National Centers for Environmental Information 2020
https://doi.org/10.25921/stkw-7w73
2. Texas Leads Country in Disasters. 18 April 2019
https://www.houstonchronicle.com/business/real-estate/article/Texas-leads-country-in-disasters-13777748.php
3. Performance characterization of a novel marsh shoreline protection technology: The Wave Suppression and Sediment Collection (WSSC) system
4. Design Optimization and Field Performance Evaluation of the Wave Suppression and Sediment Collection (WSSC) System: Computational Fluid Dynamics (CFD) Modeling, Surface Elevation Table (SET) Survey, and Marker Clay Study;Sakib,2017
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献