Abstract
Complex flow and pollutant dispersion simulations in real urban settings were investigated by using computational fluid dynamics (CFD) simulations with the SST k−ω Reynolds-averaged Navier–Stokes (RANS) equation with OpenFOAM. The model was validated with a wind-tunnel experiment using two surface-mounted cubes in tandem, and the flow features were reproduced with the correct qualitative behaviour. The real urban geometry of the Parade Square in Warsaw, Poland was represented with both laser-scanning data for the ground geometry and the CityGML standard to describe the buildings as an example. The Eulerian dispersion of a passive scalar and the flow behaviour could be resolved within minutes over a computational domain with a size of 958 × 758 m2 and a height of 300 m with over 2 M cells due to the good and strong parallel scalability in OpenFOAM. This implies that RANS modelling with parallel computing in OpenFOAM can potentially be used as a tool for situational awareness on a local urban scale; however, entire cities would be too large.
Funder
Horizon 2020 Framework Programme
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献