Anomalous Atmospheric Circulation Associated with the Extremely Persistent Dense Fog Events over Eastern China in the Late Autumn of 2018

Author:

Chen Shengjie,Liu DuanyangORCID,Kang Zhiming,Shi Yan,Liu Mei

Abstract

Under a declining trend of fog days in China, the duration of fog events since the 1990s reached a significant peak in the late autumn of 2018 over Eastern China. The average anomalous fog days were 4.74 d in November 2018 over Jiangsu Province in Eastern China, with a 1.73 standard deviation departure from climatology. Those fogs can thus be identified as a significantly abnormal climatic event with long duration, strong intensity, and extensive coverage. Based on the daily evolutions and correlations of atmospheric parameters, the dense fogs are revealed to be well configured by favorable metrological conditions such as weak dynamic progress, strong inversion in the lower troposphere and saturated air near the surface. If not disturbed, the intensification or duration of these conditions will further promote and maintain the development of fogs. The anomalous atmospheric background associated with those favorable meteorological conditions is revealed by composing the standardized anomalies of circulation fields during the fog days. Over the fog areas, vortex activities or cold air invasion is effectively hampered and the atmosphere inclines to be stable, due to the anomalous circulation pattern composed of the broadened jet stream, weakened jet core over Eastern China, undermined East Asian trough, declined East Asian winter monsoon, and enhanced anomalous southerly flows that transport abnormal warm and wet air to Eastern China. The vapor supplement is intensified by both sustained anomalous northward wind at the lower troposphere and anomalous westward wind in the near-surface. Overall, the numbers of standardized anomalies of 1000–200-hPa height, temperature, wind, and moisture fields during these fog days all significantly depart from climatology for that locale and time of the season, further demonstrating that the persistent dense fogs over Eastern China in the late autumn of 2018 is an unusual weather event with extreme synoptic-scale departures from normal.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. Fog structure;Jiusto,1981

2. The Meuse Valley fog of 1930, an air pollution disaster;Nemery;Lancet,2001

3. The main characteristics of atmospheric circulation associated with fog in Greece;Houssos;Nat. Hazard. Earth Syst.,2009

4. Urban heat island over Delhi Punches Holes in widespread fog in the Indo–Gangetic Plains;Gautam;Geophys. Res. Lett.,2018

5. The Physics of Regional Dense Fog;Li,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3