Author:
Liu Sijing,Zhao Qile,Chen Gang,Hu Zhigang,Chao Nengfang
Abstract
The reparameterization of the geometry-free and geometry-based approaches to derive single-site ionospheric delays using Global Navigation Satellite System (GNSS) measurements is described. Kalman filtering is used to compute the geometry-free and geometry-based ionospheric delays in a forward computation procedure, aiming for a real-time application case. The numerical similarity and differences between the geometry-free and geometry-based ionospheric delays are assessed in terms of both formal and experimental errors (precision). The differences between geometry-free and geometry-based ionospheric delays are derived using two types of precise orbit and clock products. The effects of the precise orbit and clock residual errors are analyzed. The correlation coefficients between the L1 and L2 wide-lane ambiguities with the ionospheric delay are derived and analyzed. It is discovered that the geometry-based ionospheric delay is negatively correlated with geometry-based wide-lane ambiguities, while the geometry-free ionospheric delay and wide-lane ambiguities are much less correlated. A simulation analysis indicates that the impacts on geometry-based ionospheric delay estimates are partly coincided with the actual time-variant errors of the used orbit and clock in the line-of-sight direction.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献