Review on Occupational Personal Solar UV Exposure Measurements

Author:

Schmalwieser Alois W.ORCID,Casale Giuseppe R.,Colosimo AlfredoORCID,Schmalwieser Susanne S.,Siani Anna MariaORCID

Abstract

During leisure time, people can decide if they want to expose themselves to solar ultraviolet (UV) radiation and to what extent. While working, people do not have this choice. Outdoor workers are exposed to solar UV radiation (UVR) on a daily basis. This may pose a certain health risk, which can be estimated when the personal solar UVR exposure (PE) is known. During past decades, a variety of studies were conducted to measure PE of outdoor workers and our knowledge of the PE of outdoor workers has increased remarkably. As shown by this review, studies clearly indicate that PE of most outdoor workers exceeds the internationally proposed threshold limit value, which is comparable to 1.0 to 1.3 standard erythema dose (SED), respectively, to 1.1 to 1.5 UV Index received over one hour. Besides working in a high UVR environ, monotonic workflow (limited movement, nearly static posture) is a risk factor. In such cases, PE can be higher than ambient UVR. In this review, we provide also a list of milestones, depicting the progress and the most important findings in this field during the past 45 years. However, in many respects our knowledge is still rudimentary, for several reasons. Different measuring positions have been used so that measured PE is not comparable. Few studies were designed to enable the extension of measured PE to other locations or dates. Although the importance of a proper calibration of the measuring devices in respect to the changing solar spectrum was pointed out from the beginning, this is often not performed, which leads to high uncertainties in the presented PE levels. At the end of our review, we provide some key points, which can be used to evaluate the quality of a study respectively to support the design of future studies.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stratospheric ozone, UV radiation, and climate interactions;Photochemical & Photobiological Sciences;2023-04-21

2. Objectively-Assessed Ultraviolet Radiation Exposure and Sunburn Occurrence;International Journal of Environmental Research and Public Health;2023-03-23

3. Risk of cutaneous squamous cell carcinoma due to occupational exposure to solar ultraviolet radiation: Protocol for a systematic review and meta-analysis;PLOS ONE;2023-03-03

4. Photoprotection in occupational dermatology;Photochemical & Photobiological Sciences;2023-02-28

5. Occupational Skin Cancer by Solar Ultraviolet Radiation;Handbook of Occupational Dermatoses;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3