Spatial and Temporal Characteristics of Rainfall Anomalies in 1961–2010 in the Yangtze River Basin, China

Author:

Bai Shuying,Gao Jixi,Xue YuORCID,Mansour Romany

Abstract

Understanding rainfall anomalies and their relationship with floods in the Yangtze River Basin (YRB) is essential for evaluating flood disasters, which have a great impact on the development of agriculture and the economy. On the basis of daily rainfall data from 1961 to 2010 from 178 meteorological stations, the temporal and spatial characteristics of rainfall anomalies in the YRB were studied on an annual scale, seasonal scale, and monthly scale. The annual rainfall of the YRB showed a generally increasing trend from 1961 to 2010 (14.22 mm/10 a). By means of the Bernaola–Galvan abrupt change test and Redfit spectrum analysis, it was found that the annual average rainfall increased abruptly after 1979 and had a cycle of 2–3 years. On the seasonal scale, the rainfall in spring and autumn showed a gradually decreasing trend, especially in September, while it showed a significant increasing trend in summer and winter in the YRB. As for the monthly scale, the rainfall in the rainy season from June to July presented a clear increasing trend during the study period, which greatly enhanced the probability of floods in the YRB. Additionally, through the analysis of the spatial distribution characteristics of rainfall in the entire YRB from 1961 to 2010, it was observed that the annual rainfall amount in the YRB presented an “increase–decrease–increase” tendency from east to west, accompanied by a rain belt that continuously moved from west to east. Moreover, the rainfall characteristics in flood years were summarized, and the results revealed that the years with rainfall anomalies were more likely to have flood disasters. However, anomalies alone would not result in big floods; the spatially and temporally inhomogeneous rainfall distribution might be the primary reason for flood disasters in the entire YRB.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3