Responses of Primary Productivity and Phytoplankton Community to the Atmospheric Nutrient Deposition in the East China Sea

Author:

Ma QingweiORCID,Chen Ying,Wang Fanghui,Li Haowen

Abstract

Atmospheric deposition of nutrients to the surface seawater may significantly affect marine phytoplankton growth. Two in situ bioassay experiments were performed in the East China Sea (ECS) by adding nutrients (N, P, and Si) and atmospheric aerosols into the surface seawater. Chlorophyll a (Chl a) concentrations were largely enhanced by simultaneous input of N and P with the maximal increase of 0.68–0.78 μg Chl a per μmol N addition. This Chl a increment was significantly lower (0.19–0.47 μg) in aerosol treatments as a result of initial N-replete condition (N/P ratio ~50) and extremely high N/P ratio in aerosols (>300). Among the multiple influencing factors, atmospheric dry flux of NH4+ + NO3− (AN) was found to be an effective predictor for springtime Chl a in the ECS with a time lag of three days and were strongly correlated with Chl a concentrations on day 3 (r = 0.81, p < 0.001), which might be partly explained by the asynchronous supplies of N (atmospheric deposition) and P (subsurface water). Although dinoflagellates dominated the phytoplankton community in both initial seawaters, additions of P and N + P + Si profoundly enhanced the cell densities and dominance of diatom species Thalassiosira sp. and Nitzschia closterium in the 2012 and 2014 bioassay experiments, respectively. Moreover, the percentage of dinoflagellates were promoted by adding higher NH4+/NO3− ratio (6/4 vs. 1/9) when silicate was at a low concentration (~2 μmol L−1). Atmospheric deposition is likely to be an important N source supporting the high primary production in the ECS and its supply of excess N relative to P may influence dominant phytoplankton groups.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3