Abstract
The rationale of this study is to highlight the significance of relationships of dengue transmission with climate and societal factors for four major cities in Pakistan (i.e., Islamabad, Rawalpindi, Lahore, and Karachi). These cities have been observed to report higher numbers of dengue cases in the last few years, with the highest number of cases reported during 2011. With careful consideration, the relationships of dengue transmission with climate factors, human population density, and traveling in the study areas have been taken into account. Regression model and generalized linear mixed model (GLM) with Markov chain Monte Carlo (MCMC) algorithm are computed to determine the relationships and random effects of different social (human population density, traveling) and climate (minimum-maximum temperatures, and rainfall) factors on dengue transmission. Neural network (NN) with multilayer perceptron algorithm is used to analyze the normalized importance of different covariates relative to dengue transmission. The results show that minimum temperature and rainfall, together with societal factors, significantly affecting the transmission of dengue in the study areas. The magnitude of these relationships is also shown by the results of the neural network. GLM also shows the significant random effects of minimum temperature, rainfall, human population density, and traveling on dengue transmission during the studied years (2009–2018).
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献