Multiscale Modeling of Convection and Pollutant Transport Associated with Volcanic Eruption and Lava Flow: Application to the April 2007 Eruption of the Piton de la Fournaise (Reunion Island)

Author:

Filippi Jean-BaptisteORCID,Durand Jonathan,Tulet Pierre,Bielli Soline

Abstract

Volcanic eruptions can cause damage to land and people living nearby, generate high concentrations of toxic gases, and also create large plumes that limit observations and the performance of forecasting models that rely on these observations. This study investigates the use of micro- to meso-scale simulation to represent and predict the convection, transport, and deposit of volcanic pollutants. The case under study is the 2007 eruption of the Piton de la Fournaise, simulated using a high-resolution, coupled lava/atmospheric approach (derived from wildfire/atmosphere coupled code) to account for the strong, localized heat and gaseous fluxes occurring near the vent, over the lava flow, and at the lava–sea interface. Higher resolution requires fluxes over the lava flow to be explicitly simulated to account for the induced convection over the flow, local mixing, and dilution. Comparisons with air quality values at local stations show that the simulation is in good agreement with observations in terms of sulfur concentration and dynamics, and performs better than lower resolution simulation with parameterized surface fluxes. In particular, the explicit representation of the thermal flows associated with lava allows the associated thermal breezes to be represented. This local modification of the wind flow strongly impacts the organization of the volcanic convection (injection height) and the regional transport of the sulfur dioxide emitted at the vent. These results show that explicitly solving volcanic activity/atmosphere complex interactions provides realistic forecasts of induced pollution.

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3