Characteristics of Summer Hourly Extreme Precipitation Events and Its Local Environmental Influencing Factors in Beijing under Urbanization Background

Author:

Zheng Zuofang,Xu Guirong,Gao Hua

Abstract

Studies on urban extreme precipitation and its influencing factors are significant for prevention and reduction of meteorological disasters; however, few studies focus on hourly extreme precipitation (HEP) events due to the limitation of observation. By using the summer hourly precipitation data in Beijing from 1980 to 2020, the spatial distribution and temporal variation of HEP as well as its local environmental influencing factors are investigated. It is found that both summer precipitation amount and frequency of HEP are affected by topography, with high values in windward slope area. The summer precipitation amount of HEP is 160–200 mm, accounting for 42–47% of the annual summer precipitation amount, while the frequency proportion of HEP is only 5.5–6.0%. Although the summer precipitation amount and frequency in Beijing both decrease in the past 41 years, those for HEP present an opposite trend mainly due to the increasing HEP since 2003 and this is a phenomenon worthy of attention. A similar bimodal pattern in diurnal variation is found for the summer precipitation amount and frequency of HEP, with two peaks in 19–22 LT and 01–05 LT, respectively, indicating that HEPs are more concentrated in the evening and early morning especially in urban area. Moreover, the urbanization process of Beijing is consistent with the change trend of HEP, implying that the stronger the urban heat island intensity (UHI), the higher the probability of HEP. Furthermore, the convergence lines of terrain are also conducive to local heavy rainfall, and lower tropospheric stability (LTS) and convective available potential energy (CAPE) as well as aerosols may also affect HEP in Beijing.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3