Abstract
Climate change and air pollution pose multiple health threats to humans through complex and interacting pathways, whereas urban vegetation can improve air quality by influencing pollutant deposition and dispersion. This study estimated the amount of PM2.5 removal by the urban forest in the city of Shanghai by using remote sensing data of vegetation and a model approach. We also identified its potential contribution of urban forest presence in relation to human population and particulate matter concentration. Results show that the urban forest in Shanghai reached 46,161 ha in 2017, and could capture 874 t of PM2.5 with an average of 18.94 kg/ha. There are significant spatial heterogeneities in the role of different forest communities and administrative districts in removing PM2.5. Although PM2.5 removal was relatively harmonized with the human population distribution in terms of space, approximately 57.41% of the urban forest presented low coupling between removal capacity and PM2.5 concentration. Therefore, we propose to plant more trees with high removal capacity of PM2.5 in the western areas of Shanghai, and increase vertical planting in bridge pillars and building walls to compensate the insufficient amount of urban forest in the center area.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献