Quantifying the Potential Contribution of Urban Forest to PM2.5 Removal in the City of Shanghai, China

Author:

Zhang BiaoORCID,Xie Zixia,She Xinlu,Gao Jixi

Abstract

Climate change and air pollution pose multiple health threats to humans through complex and interacting pathways, whereas urban vegetation can improve air quality by influencing pollutant deposition and dispersion. This study estimated the amount of PM2.5 removal by the urban forest in the city of Shanghai by using remote sensing data of vegetation and a model approach. We also identified its potential contribution of urban forest presence in relation to human population and particulate matter concentration. Results show that the urban forest in Shanghai reached 46,161 ha in 2017, and could capture 874 t of PM2.5 with an average of 18.94 kg/ha. There are significant spatial heterogeneities in the role of different forest communities and administrative districts in removing PM2.5. Although PM2.5 removal was relatively harmonized with the human population distribution in terms of space, approximately 57.41% of the urban forest presented low coupling between removal capacity and PM2.5 concentration. Therefore, we propose to plant more trees with high removal capacity of PM2.5 in the western areas of Shanghai, and increase vertical planting in bridge pillars and building walls to compensate the insufficient amount of urban forest in the center area.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3