Effect of Biochar and Straw Application on Nitrous Oxide and Methane Emissions from Eutric Regosols with Different pH in Sichuan Basin: A Mesocosm Study

Author:

Ntacyabukura TiteORCID,Uwiringiyimana Ernest,Zhou MinghuaORCID,Zhang Bowen,Zhu Bo,Harerimana Barthelemy,Nambajimana Jean de DieuORCID,Nsabimana GratienORCID,Nsengumuremyi Pascal

Abstract

Adoption of crop residue amendments has been increasingly recommended as an effective management practice for mitigating greenhouse gas emissions while enhancing soil fertility, thereby increasing crop production. However, the effect of biochar and straw on nitrous oxide (N2O) and methane (CH4) emissions in soils of differing pH remains poorly understood. Three treatments (control (i.e., no amendment), maize straw, and biochar derived from maize straw) were therefore established separately in soils with different pH levels, classified as follows: acidic, neutral, and alkaline. N2O and CH4 were investigated using a static chamber–gas chromatography system during 57 days of a mesocosm study. The results showed that cumulative N2O emissions were significantly higher in acidic soils than in other experimental soils, with the values ranging from 7.48 to 11.3 kg N ha−1, while CH4 fluxes ranged from 0.060 to 0.089 kg C ha−1, with inconclusive results. However, a weak negative correlation was observed between log N2O and log NO3-N in acidic soil with either biochar or straw, while the same parameters with CH4 showed a moderate negative correlation, suggesting a likelihood that these amendments could mitigate GHGs as a result of the NO3-N increase in acidic soils. It is also possible, given the alkaline nature of the biochar, that incorporation had a significant buffer effect on soil acidity, effectively increasing soil pH by >0.5 pH units. Our findings suggest that for the rates of application for biochar and straw used in this study, the magnitude of reductions in the emissions of N2O and CH4 are dependent in part on initial soil pH.

Funder

National Key Research and Development Program of China

The strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference99 articles.

1. A warm response by soils

2. Agriculture, Forestry and Other Land Use (AFOLU);Smith,2014

3. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

4. Atmospheric methane and global change

5. Nitrous Oxide (N 2 O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3