Abstract
Ground-based temperature measurements at Svalbard, Wuppertal, and Hohenpeissenberg were analyzed to obtain F10.7, Ap index, and Dst index trends. The trends were then compared to those obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements at the same locations. Trend analysis was carried out for overlapped time periods, full range of available data, and the CO2-detrended full range of available data. The Svalbard meteor radar (SABER) temperature showed a weak (moderate) correlation with F10.7 and a moderate (weak) correlation with Ap and Dst indices. The trends in the Wuppertal OH* temperature compare well with the SABER temperature when a full range of data is used in the analysis. Both temperatures had a similar F10.7 trend with the same level of correlation coefficient. The F10.7 trend in the Hohenpeissenberg OH* temperature compared well with that obtained by SABER, but the former displayed a weak correlation. The Hohenpeissenberg data displayed a very weak correlation with Ap and Dst indices. Our study clearly shows that a longer dataset would better capture trends in temperature, as was evidenced by the results of Wuppertal data. The CO2-detrended temperatures overall showed slightly larger trend values with a slightly better correlation.
Funder
US National Science Foundation
Subject
Atmospheric Science,Environmental Science (miscellaneous)