Turbulent Momentum Flux Behavior above a Fire Front in an Open-Canopied Forest

Author:

Heilman Warren E.,Clark Kenneth L.,Bian Xindi,Charney Joseph J.,Zhong ShiyuanORCID,Skowronski Nicholas S.ORCID,Gallagher Michael R.,Patterson Matthew

Abstract

Atmospheric turbulent circulations in the vicinity of wildland fire fronts play an important role in the transfer of momentum into and out of combustion zones, which in turn can potentially affect the behavior and spread of wildland fires. The vertical turbulent transfer of momentum is accomplished via individual sweep, ejection, outward interaction, and inward interaction events, collectively known as sweep-ejection dynamics. This study examined the sweep-ejection dynamics that occurred before, during, and after the passage of a surface fire front during a prescribed fire experiment conducted in an open-canopied forest in the New Jersey Pine Barrens. High-frequency (10 Hz), tower-based, sonic anemometer measurements of horizontal and vertical wind velocity components in the vicinity of the fire front were used to assess the relative frequencies of occurrence of the different types of momentum-flux events, their contributions to the overall momentum fluxes, and their periodicity patterns. The observational results suggest that the presence of surface fire fronts in open-canopied forests can substantially change the sweep-ejection dynamics that typically occur when fires are not present. In particular, sweep events resulting in the downward transport of high horizontal momentum air from above were found to be more prominent during fire-front-passage periods.

Funder

U.S. Department of Defense

U.S. Forest Service

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3