Environmental Impact of District Heating System Retrofitting

Author:

Zajacs AleksandrsORCID,Borodinecs AnatolijsORCID,Vatin NikolaiORCID

Abstract

Retrofitting of district heating systems is a comprehensive process which covers all stages of district heating (DH) systems: production, distribution and consumption. This study quantitatively shows the effect of retrofitting measures and represents strengths and weaknesses of different development scenarios. Improvements in production units show improvements in fuel use efficiency and thus indirectly reduce CO2 emissions due to unburned fuel. For this purpose, validated district planning tools have been used. Tool uses mathematical model for calculation and evaluation of all three main components of the DH system. For the quantitative evaluation, nine efficiency and balance indicators were used. For each indicator, recommended boundary values were proposed. In total, six simulation scenarios were simulated, and the last scenario have shown significant reduction in CO2 emissions by 40% (from 3376 to 2000 t CO2 compared to the actual state), while share of biomass has reached 47%.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference36 articles.

1. When will fossil fuel reserves be diminished?

2. Characteristics and Health Risk Assessment of PM2.5-Bound PAHs during Heavy Air Pollution Episodes in Winter in Urban Area of Beijing, China

3. BP Annual Review 2020, British Petroleum 2020https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf

4. EU Climate Action and the European Green Dealhttps://ec.europa.eu/clima/policies/eu-climate-action_en

5. The Growing Role of Minerals and Metals for a Low Carbon Futurehttps://www.worldbank.org/en/topic/energy/publication/minerals-and-metals-to-play-significant-role-in-a-low-carbon-future#:~:text=The%20rise%20of%20green%20energy,new%20World%20Bank%20report%2C%20%E2%80%9CThe

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3