Experimental Determination of Pedestrian Thermal Comfort on Water-Retaining Pavement for UHI Adaptation Strategy

Author:

Shimazaki YasuhiroORCID,Aoki Masashige,Nitta Jumpei,Okajima Hodaka,Yoshida AtsumasaORCID

Abstract

Artificial impervious surfaces are one of the most significant factors contributing to urban heat islands (UHIs). Adapting to UHIs is a challenge in achieving thermal comfort. We conducted a quantitative and subjective evaluation of a closely paved novel water-retaining pavement (WR) and a conventional dense-asphalt pavement (AS). We investigated the thermal states of humans based on the human energy balance known as “human thermal load” as an indicator for the assessment, and the original human thermal load method was improved for assessing nonuniform environments such as pavements. We looked for individual thermal perceptions simultaneously. The experiment was conducted in typical summer weather. The surface temperature of the WR was found to be significantly lower, by 9.5 °C, while the air temperature and humidity above both pavements were not significantly different. Thus, air conditions did not directly affect the sensible and latent heat loss. The reflected solar radiation was significantly larger, and the infrared radiation was significantly smaller on the WR than on the AS due to the lower surface temperature from the water evaporation and higher reflectance. Further, the human thermal load at a pedestrian level of 1.5 m was found to be significantly different: 237 W/m2 for AS and 215 W/m2 for WR. In a subjective evaluation, the perceptions of WR tend to be distributed in smaller human thermal load, thereby resulting in a cooler and comfortable sensation. Therefore, we demonstrated that when compared to AS, WR significantly improves thermal comfort.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3