Bioaerosol Emissions during Organic Waste Treatment for Biopolymer Production: A Case Study

Author:

Pascale Erica,Franchitti Elena,Caredda ChiaraORCID,Fornasero Stefania,Carletto Giulia,Pietrangeli Biancamaria,Valentino FrancescoORCID,Pavan Paolo,Gilli Giorgio,Anedda ElisaORCID,Traversi DeborahORCID

Abstract

Environmentally sustainable methods of waste disposal are a strategic priority. For organic waste management and innovative biological treatments present advantageous opportunities, although organic waste treatment also includes environmental drawbacks, such as bioaerosol production. This study aims to evaluate bioaerosol spread during an innovative experimental treatment. The process consists of two anaerobic steps: acidogenesis, which includes polyhydroxyalkanoate accumulation, followed by methanogenesis. Bioaerosol, PM10, and endotoxin concentrations were measured at three sampling points during different campaigns to evaluate: (1) the background levels, (2) the contamination produced in the pre-treatment stage, and (3) the residual contamination of the outgoing digested sludge. Environmental PM10 seemed to be generally quite contained, while the endotoxin determination was close to 90 EU/m3. Significant microbial concentrations were detected during the loading of the organic fraction of municipal solid waste (fungi > 1300 CFU/m3, Bacillus genus (≈103 CFU/m3), higher Clostridium spp. and opportunistic human pathogens such as Pseudomonas aeruginosa and Klebsiella pneumoniae), suggesting a significant contamination level. Such results are useful for hazard identification in the risk assessment of innovative processes, as they reveal contaminants potentially harmful to both workers’ health and the environment.

Funder

Istituto Nazionale per l'Assicurazione Contro Gli Infortuni sul Lavoro

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3