Abstract
Using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to obtain backward trajectories and then conduct clustering analysis is a common method to analyze potential sources and transmission paths of atmospheric particulate pollutants. Taking Qingdao (N36 E120) as an example, the global data assimilation system (GDAS 1°) of days from 2015 to 2018 provided by National Centers for Environmental Prediction (NCEP) is used to process the backward 72 h trajectory data of 3 arrival heights (10 m, 100 m, 500 m) through the HYSPLIT model with a data interval of 6 h (UTC 0:00, 6:00, 12:00, and 18:00 per day). Three common clustering methods of trajectory data, i.e., K-means, Hierarchical clustering (Hier), and Self-organizing maps (SOM), are used to conduct clustering analysis of trajectory data, and the results are compared with those of the HYSPLIT model released by National Oceanic and Atmospheric Administration (NOAA). Principal Component Analysis (PCA) is used to analyze the original trajectory data. The internal evaluation indexes of Davies–Bouldin Index (DBI), Silhouette Coefficient (SC), Calinski Harabasz Index (CH), and I index are used to quantitatively evaluate the three clustering algorithms. The results show that there is little information in the height data, and thus only two-dimensional plane data are used for clustering. From the results of clustering indexes, the clustering results of SOM and K-means are better than the Hier and HYSPLIT model. In addition, it is found that DBI and I index can help to select the number of clusters, of which DBI is preferred for cluster analysis.
Funder
National Key Research and Development Program of China
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献