Refined Characteristics of Moisture Cycling over the Inland River Basin Using the WRF Model and the Finer Box Model: A Case Study of the Heihe River Basin

Author:

Pan XiaoduoORCID,Ma WeiqiangORCID,Zhang Ying,Li Hu

Abstract

The Heihe River Basin (HRB), located on the northeastern edge of the Tibetan Plateau, is the second-largest inland river basin in China, with an area of 140,000 km2. The HRB is a coupling area of the westerlies, the Qinghai–Tibet Plateau monsoon and the Southeast monsoon circulation system, and is a relatively independent land-surface water-circulating system. The refined characteristics of moisture recycling over the HRB was described by using the Weather Research and Forecasting (WRF) model for a long-term simulation, and the “finer box model” for calculating the net water-vapor flux. The following conclusions were drawn from the results of this study: (1) The water vapor of the HRB was dominantly transported by the wind from the west and from the north, and the west one was much larger than the north one. The net vapor transported by the west wind was positive, and by the north wind was negative. (2) The precipitation over the HRB was triggered mainly by the vapor from the west, which arose from the lower vertical layer to higher one during transporting from west to east. The vapor from the north sank from a higher layer to a lower one, and crossed the south edge of the HRB. (3) The moisture-recycling ratio of evapotranspiration to precipitation over the HRB was much higher than the other regions, which may be due to the strong land–atmosphere interaction in the arid inland river basin.

Funder

The Strategic Priority Research Program of the Chinese Academy of Sciences

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3