Trends of Aerosol Optical Thickness Using VIIRS S-NPP during Fog Episodes in Pakistan and India

Author:

Umar MuhammadORCID,Atif SalmanORCID,Hildebrandt Mark L.ORCID,Tahir Ali,Azmat Muhammad,Zeeshan MuhammadORCID

Abstract

Aerosol Optical Thickness (AOT) is one of the important parameters for assessing regional and global level of climate change. Fog episodes have considerably increased in south Asia because of environmental factors, and the burning of agricultural residue leads to major social and economic problems. In present study, Mann-Kendall trend analysis of AOT and active fire events was done, and their significance were assessed using long-term (October 2012–February 2020) remote sensing data derived smog maps. Visible Infrared Imaging Radiometer Suite National Polar Partnership (VIIRS N-PP) was used to map AOT episodes over the northern region of Pakistan and India. Results reveal that AOT displays a significantly decreasing trend over the northern and eastern region of Pakistan and a similar decreasing trend from the Western to Eastern region of India. Furthermore, active fire events have a significantly increasing trend at the Northern region of Pakistan. However, fire events have a significantly decreasing trend over the southern and southeastern region of India. Additionally, statistically significant decreasing trends were observed for AOT over Chakwal (p-value = 0.2, Z_MK = −2.3) and Patiala (p-value = 0.15, Z_MK = −3.2). Fire events have a significantly increasing trend for Dera Ismail Khan (p-value = 0.01, Z_MK = 1.9), Jhang (p-value = 0.01, Z_MK = 1.9), and Chakwal (p-value = 0.01, Z_MK = 1.8), while they are significantly decreasing trend near New Delhi (p-value = 0.2, Z_MK = −0.9), Aligarh (p-value = 0.15, Z_MK = −0.9) and Patiala (p-value = 0.2, Z_MK = −0.8).

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference83 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;Stocker,2013

2. Aerosol optical depths and their contributing sources in Taiwan

3. Evaluation of emissions and air quality in megacities

4. Aerosol-induced intensification of rain from the tropics to the mid-latitudes

5. Aerosol-cloud-precipitation system as a predator-prey problem

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3