Large Eddy Simulation of Microphysics and Influencing Factors in Shallow Convective Clouds

Author:

Zhou Zhuangzhuang,Yin Chongzhi,Lu Chunsong,Jia Xingcan,Ye Fang,Qiu Yujun,Cheng Muning

Abstract

A flight of shallow convective clouds during the SCMS95 (Small Cumulus Microphysics Study 1995) observation project is simulated by the large eddy simulation (LES) version of the Weather Research and Forecasting Model (WRF-LES) with spectral bin microphysics (SBM). This study focuses on relative dispersion of cloud droplet size distributions, since its influencing factors are still unclear. After validation of the simulation by aircraft observations, the factors affecting relative dispersion are analyzed. It is found that the relationships between relative dispersion and vertical velocity, and between relative dispersion and adiabatic fraction are both negative. Furthermore, the negative relationships are relatively weak near the cloud base, strengthen with the increasing height first and then weaken again, which is related to the interplays among activation, condensation and evaporation for different vertical velocity and entrainment conditions. The results will be helpful to improve parameterizations related to relative dispersion (e.g., autoconversion and effective radius) in large-scale models.

Funder

Chunsong Lu

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference70 articles.

1. Factors responsible for the vertical development of tropical oceanic cumulus convection

2. Impacts of cumulus convection on thermodynamic fields;Yanai,1993

3. The Role of Shallow Convection over the Tibetan Plateau

4. The Environment of Precipitating Shallow Cumulus Convection

5. Influences of shallow convective process and boundary-layer clouds on cloud forecast in GRAPES Global Model;Jiang;Meteorol. Mon.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3