Satellite-Based Personal UV Dose Estimation

Author:

Harris Todd C.ORCID,Vuilleumier LaurentORCID,Backes ClaudineORCID,Nenes Athanasios,Vernez DavidORCID

Abstract

Epidemiology and public health research relating to solar ultraviolet (UV) exposure usually relies on dosimetry to measure UV doses received by individuals. However, measurement errors affect each dosimetry measurement by unknown amounts, complicating the analysis of such measurements and their relationship to the underlying population exposure and the associated health outcomes. This paper presents a new approach to estimate UV doses without the use of dosimeters. By combining new satellite-derived UV data to account for environmental factors and simulation-based exposure ratio (ER) modelling to account for individual factors, we are able to estimate doses for specific exposure periods. This is a significant step forward for alternative dosimetry techniques which have previously been limited to annual dose estimation. We compare our dose estimates with dosimeter measurements from skiers and builders in Switzerland. The dosimetry measurements are expected to be slightly below the true doses due to a variety of dosimeter-related measurement errors, mostly explaining why our estimates are greater than or equal to the corresponding dosimetry measurements. Our approach holds much promise as a low-cost way to either complement or substitute traditional dosimetry. It can be applied in a research context, but is also fundamentally well-suited to be used as the basis for a dose-estimating mobile app that does not require an external device.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference58 articles.

1. The epidemiology of UV induced skin cancer

2. Sun exposure and skin cancer, and the puzzle of cutaneous melanoma

3. Solar and Ultraviolet Radiation,1992

4. Solar Ultraviolet Radiation: Global Burden of Disease from Solar Ultraviolet Radiation;Lucas,2006

5. Detailed site distribution of melanoma and sunlight exposure: aetiological patterns from a Swiss series

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3