Effect of Vertical Profile of Aerosols on the Local Shortwave Radiative Forcing Estimation

Author:

Molero FranciscoORCID,Fernández Alfonso Javier,Revuelta María AránzazuORCID,Martínez-Marco Isabel,Pujadas Manuel,Artíñano Begoña

Abstract

In this work, the effect of the aerosol vertical distribution on the local shortwave aerosol radiative forcing is studied. We computed the radiative forcing at the top and bottom of the atmosphere between 0.2 and 4 microns using the libRadTran package and compared the results with those provided by AERONET (AErosol RObotic NETwork). Lidar measurements were employed to characterize the aerosol vertical profile, and collocated AERONET measurements provided aerosol optical parameters required to calculate its radiative forcing. A good correlation between the calculated radiative forcings and those provide by AERONET, with differences smaller than 1 W m−2 (15% of estimated radiative forcing), is obtained when a gaussian vertical aerosol profile is assumed. Notwithstanding, when a measured aerosol profile is inserted into the model, differences between radiative forcings can vary up to 6.54 W m−2 (15%), with a mean of differences = −0.74 ± 3.06 W m−2 at BOA and −3.69 W m−2 (13%), with a mean of differences = −0.27 ± 1.32 W m−2 at TOA due to multiple aerosol layers and aerosol types. These results indicate that accurate information about aerosol vertical distribution must be incorporated in the radiative forcing calculation in order to reduce its uncertainties.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference50 articles.

1. Radiative forcing and climate response

2. IPCC AR5 (2013) Chapter 8: Anthropogenic and Natural Radiative Forcing;Myhre,2013

3. Clouds and Aerosols. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.;Boucher,2013

4. Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future

5. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3