Improved Measurement Performance for the Sharp GP2Y1010 Dust Sensor: Reduction of Noise

Author:

Thompson Jonathan E.ORCID

Abstract

Sharp GP2Y1010 dust sensors are increasingly being used within distributed sensing networks and for personal monitoring of exposure to particulate matter (PM) pollution. These dust sensors offer an easy-to-use solution at an excellent price point; however, the sensors are known to offer limited dynamic range and poor limits of detection (L.O.D.), often >15 μg m−3. The latter figure of merit precludes the use of this inexpensive line of dust sensors for monitoring PM2.5 levels in environments within which particulate pollution levels are low. This manuscript presents a description of the fabrication and circuit used in the Sharp GP2Y1010 dust sensor and reports several effective strategies to minimize noise and maximize limits of detection for PM. It was found that measurement noise is primarily introduced within the photodiode detection circuitry, and that electromagnetic interference can influence dust sensor signals dramatically. Through optimization of the external capacitor and resistor used in the LED drive circuit—and the inter-pulse delay, electromagnetic shielding, and data acquisition strategy—noise was reduced approximately tenfold, leading to a projected noise equivalent limit of detection of 3.1 μg m−3. Strategies developed within this manuscript will allow improved limits of detection for these inexpensive sensors, and further enable research toward unraveling the spatial and temporal distribution of PM within buildings and urban centers—as well as an improved understanding of effect of PM on human health.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3