The Phenomenon of Diurnal Variations for Summer Deep Convective Precipitation over the Qinghai-Tibet Plateau and Its Southern Regions as Viewed by TRMM PR

Author:

Luo Jing,Zheng JianqiuORCID,Zhong LeiORCID,Zhao Chun,Fu Yunfei

Abstract

This study analyzed the diurnal variations of summer deep convective precipitation (DCP) over the Qinghai-Tibet Plateau (QTP) and its southern region. The results show that DCP is the main type of precipitation over the QTP. The precipitation intensity of DCP is less than 3 mm/h over the QTP, which is much lower than the precipitation intensity in non-plateau regions. DCP over non-plateau regions is related to the convergence of surface wind, but that over the QTP are not. The mean maximum echo of DCP is less than 26 dBZ over the QTP, less than in non-plateau regions. The mean altitude of maximum echo decreases from about 7.5 km in the western plateau to 6 km in the eastern plateau, while it reaches only 4.5–5 km in the non-plateau region. The DCP frequency peak occurs in the afternoon in the major area of the QTP including valley region. The peak time of DCP frequency is different from its intensity, and the former is 1 to 2 h earlier. Study also indicates strong diurnal variations in frequency, intensity, and the maximum echo over the QTP, which is consistent with diurnal changes of geopotential height fields of 500 hPa and 200 hPa.

Funder

National Natural Science Foundation of China

the Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3