Author:
Li Xiaoyu,Chen Sheng,Liang Zhenqing,Huang Chaoying,Li Zhi,Hu Baoqing
Abstract
This paper evaluated the latest version 6.0 Global Satellite Mapping of Precipitation (GSMaP) and version 6.0 Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG) products during 2018 Typhoon Mangkhut in China. The reference data is the rain gauge datasets from Gauge-Calibrated Climate Prediction Centre (CPC) Morphing Technique (CMORPHGC). The products for comparison include the GSMaP near-real-time, Microwave-IR merged, and gauge-calibrated (GSMaP_NRT, GSMaP_MVK, and GSMaP_Gauge) and the IMERG Early, Final, and Final gauge-calibrated (IMERG_ERUncal, IMERG_FRUncal, and IMERG_FRCal) products. The results show that (1) both GSMaP_Gauge and IMERG_FRCal considerably reduced the bias of their satellite-only products. GSMaP_Gauge outperforms IMERG_FRCal with higher Correlation Coefficient (CC) values of about 0.85, 0.78, and 0.50; lower Fractional Standard Error (FSE) values of about 18.00, 18.85, and 29.30; and Root-Mean-Squared Error (RMSE) values of about 12.12, 33.35, and 32.99 mm in the rainfall centers over mainland China, southern China, and eastern China, respectively. (2) GSMaP products perform better than IMERG products, with higher Probability of Detection (POD) and Critical Success Index (CSI) and lower False Alarm Ratio (FAR) in detecting rainfall occurrence, especially for high rainfall rates. (3) For area-mean rainfall, IMERG performs worse than GSMaP in the rainfall centers over mainland China and southern China but shows better performance in the rainfall center over eastern China. GSMaP_Gauge and IMERG_FRCal perform well in the three regions with a high CC (0.79 vs. 0.94, 0.81 vs. 0.96, and 0.95 vs. 0.97) and a low RMSE (0.04 vs. 0.06, 0.40 vs. 0.59, and 0.19 vs. 0.34 mm). These useful findings will help algorithm developers and data users to better understand the performance of GSMaP and IMERG products during typhoon precipitation events.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Reference42 articles.
1. A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their Impacts on Coastal Inundation in Macau
2. Experts Say Typhoon Mangkhut Is Not the Strongest Typhoon Made Landfall in Guangdong Provincehttp://news.weather.com.cn/2018/09/2937054.shtml
3. The King of the Typhoon Mangkhut Is the Largest Typhoon Since 2018! With a Diameter of More Than 1000 Kilometers, It Can Fit Guangdong and Hainan into Ithttp://www.fishfirst.cn/article.php?aid=105485
4. Inter-Comparison of High-Resolution Satellite Precipitation Products over Central Asia
5. Evaluation of PERSIANN System Satellite–Based Estimates of Tropical Rainfall