Impact of Microphysical Parameterizations on Simulated Hurricanes—Using Multi-Parameter Satellite Data to Determine the Particle Size Distributions that Produce Most Realistic Storms

Author:

Hristova-Veleva SvetlaORCID,Haddad Ziad,Chau Alexandra,Stiles Bryan W.,Turk F. Joseph,Li P. Peggy,Knosp BrianORCID,Vu Quoc,Shen Tsae-Pyng,Lambrigtsen Bjorn,Seo Eun-Kyoung,Su Hui

Abstract

Understanding and forecasting hurricanes remains a challenge for the operational and research communities. To accurately predict the Tropical Cyclone (TC) evolution requires properly reflecting the storm’s inner core dynamics by using: (i) high-resolution models; (ii) realistic physical parameterizations. The microphysical processes and their representation in cloud-permitting models are of crucial importance. In particular, the assumed Particle Size Distribution (PSD) functions affect nearly all formulated microphysical processes and are among the most fundamental assumptions in the bulk microphysics schemes. This paper analyzes the impact of the PSD assumptions on simulated hurricanes and their synthetic radiometric signatures. It determines the most realistic, among the available set of assumptions, based on comparison to multi-parameter satellite observations. Here we simulated 2005′s category-5 Hurricane Rita using the cloud-permitting community Weather Research and Forecasting model (WRF) with two different microphysical schemes and with seven different modifications of the parametrized hydrometeor properties within one of the two schemes. We then used instrument simulators to produce satellite-like observations. The study consisted in evaluating the structure of the different simulated storms by comparing, for each storm, the calculated microwave signatures with actual satellite observations made by (a) the passive microwave radiometer that was carried by the Tropical Rainfall Measuring Mission (TRMM) satellite—the TRMM microwave imager TMI, (b) TRMM’s precipitation radar (PR) and (c) the ocean-wind-vector scatterometer carried by the QuikSCAT satellite. The analysis reveals that the different choices of microphysical parameters do produce significantly different microwave signatures, allowing an objective determination of a “best” parameter combination whose resulting signatures are collectively most consistent with the wind and precipitation observations obtained from the satellites. In particular, we find that assuming PSDs with larger number of smaller hydrometeors produces storms that compare best to observations.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3