Climate Change Impacts on Temperature and Chill Unit Trends for Apple (Malus domestica) Production in Ceres, South Africa

Author:

Tharaga Phumudzo CharlesORCID,Steyn Abraham StephanusORCID,Coetzer Gesine Maria

Abstract

Climate is an essential part of crop production, determining the suitability of a given region for deciduous fruit products such as apples (Malus domestica). It influences the yield and quality of fruits. There is strong evidence of global and regional-scale climate change since the advent of the industrial era. In South Africa, mean surface temperatures have revealed a warming trend over the last century. This study aimed to assess the impact of climate change on temperature and chill unit trends for apple production in Ceres, South Africa. The daily positive Utah chill units (DPCU) model was used as frequent high temperatures can lead to a high negation volume. Historically observed (1981–2010) and future projected (2011–2100) temperatures were obtained from the South African Weather Service (SAWS) and three ensemble members of the Cubic-Conformal Atmospheric Model (CCAM), respectively. The latter employed the RCP8.5 pathway. Linear trends were calculated for temperature and accumulated PCUs for the historical base period. The probability of accumulating specific threshold PCU values for both historical and future periods was assessed from cumulative distribution functions (CDFs). The historical change in minimum temperatures showed no significant trend. Ceres revealed a warming trend in maximum temperatures over the historical period. By the 2080s, the probability of not exceeding a threshold of 1600 PCUs was exceptionally high for all ensemble members. Future projections showed a decline in the accumulated PCUs of 2–5% by the 2020s, 7–17% by the 2050s, and 20–34% towards the end of the 20th century. Based on these results, it is clear that winter chill units are negatively influenced by climate change. The loss in yield and fruit quality of apples due to climate change can negatively impact the export market, leading to significant economic losses for apple production in the Ceres area.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference44 articles.

1. CLIMATE CHANGE IN THE WESTERN CAPE OF SOUTH AFRICA: TRENDS, PROJECTIONS AND IMPLICATIONS FOR CHILL UNIT ACCUMULATION

2. IPCC WG1AR5 Chapter 12 Long-Term Climate Change: Projections, Commitments and Irreversibility;Collins,2013

3. Maximum and minimum temperature trends for the globe: An update through 2004

4. Climate Risk and Vulnerability: A Handbook for Southern Africa;Davis,2011

5. State of the Global Climate 2020: Provisional Report,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3