Spatial Evaluation of Greenhouse Gas Fluxes in a Sasa (Dwarf Bamboo) Invaded Wetland Ecosystem in Central Hokkaido, Japan

Author:

Kagemoto Akane,Takakai FumiakiORCID,Nagata Osamu,Takada Masayuki,Hatano RyusukeORCID

Abstract

To evaluate the effect of vegetation change on greenhouse gas (GHG) budget from a wetland ecosystem, the CO2, CH4 and N2O budgets from whole area (21.5 ha) of the Bibai Wetland, where dwarf bamboo (Sasa) or Ilex has invaded into original Sphagnum dominated vegetation, located in Hokkaido, Japan were estimated. The original Sphagnum-dominated vegetation was changed from a sink to a source of CO2 by invasion of short-Sasa (50 cm > height), while the invasion of tall-Sasa (50 cm < height < 150 cm) or Ilex increased CO2 uptake. Annual CH4 emission was decreased by the invasion of Sasa or Ilex. The annual N2O emission was slightly increased by invasion of Ilex only. These GHG budgets were correlated with the environmental factors related to the water table depth. The distribution of vegetation and environmental factors was estimated from satellite image bands, and the GHG budget of the entire wetland was estimated. The whole wetland area was considered to be a sink for GHG (−113 Mg CO2-eq y−1) and CO2 uptake by tall-Sasa occupied 71% of the GHG budget. The vegetation change due to the lowering of the water table depth currently increases the rate of carbon accumulation in the ecosystem by about 5 times.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference65 articles.

1. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming

2. Carbon accumulation in West Siberian mires, Russia;Turnen;Glob. Biogeochem. Cycles,2001

3. The limits of peat bog growth;Clymo;Philos. Trans. R. Soc. Lond. B,1984

4. The physical science basis: Anthropogenic and natural radiative forcing,2013

5. Greenhouse gas emissions from farmed organic soils: a review

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3