Author:
Jiang Feng,Han Xingyu,Zhang Wenya,Chen Guici
Abstract
There is an important significance for human health in predicting atmospheric concentration precisely. However, due to the complexity and influence of contingency, atmospheric concentration prediction is a challenging topic. In this paper, we propose a novel hybrid learning method to make point and interval predictions of PM2.5 concentration simultaneously. Firstly, we optimize Sparrow Search Algorithm (SSA) by opposition-based learning, fitness-based learning, and Lévy flight. The experiments show that the improved Sparrow Search Algorithm (FOSSA) outperforms SSA-based algorithms. In addition, the improved Sparrow Search Algorithm (FOSSA) is employed to optimize the initial weights of probabilistic forecasting model with autoregressive recurrent network (DeepAR). Then, the FOSSA–DeepAR learning method is utilized to achieve the point prediction and interval prediction of PM2.5 concentration in Beijing, China. The performance of FOSSA–DeepAR is compared with other hybrid models and a single DeepAR model. Furthermore, hourly data of PM2.5 and O3 concentration in Taian of China, O3 concentration in Beijing, China are used to verify the effectiveness and robustness of the proposed FOSSA–DeepAR learning method. Finally, the empirical results illustrate that the proposed FOSSA–DeepAR learning model can achieve more efficient and accurate predictions in both interval and point prediction.
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献