A Weather-Type Classification and Its Application to Near-Surface Wind Climate Change Projections over the Adriatic Region

Author:

Belušić Vozila AndreinaORCID,Telišman Prtenjak Maja,Güttler Ivan

Abstract

The main goal of this study is to present a recently developed classification method for weather types based on the vorticity and the location of the synoptic centers relative to the Adriatic region. The basis of the present objective classification, applied to the Adriatic region, is the subjective classification developed by Poje. Our algorithm considered daily mean sea-level pressure and 500 hPa geopotential height to define one out of 17 possible weather types. We applied the algorithm to identify which weather type was relevant in the generation of the two typical near-surface winds over the Adriatic region, namely Bora and Sirocco. Two high-resolution (0.11°) EURO-CORDEX regional climate models were used, SMHI-RCA4 and DHMZ-RegCM4, forced by several CMIP5 global climate models and analyzed for two 30-year periods: near-present day and mid-21st century climate conditions under the high-end Representative Concentration Pathway (RCP8.5) scenario. Bora and Sirocco days were extracted for each weather type and a distribution over the 30-year period was presented. Our results suggest that in the winter season, climate model projections indicate a reduction in the main cyclonic types relevant in the formation of Bora over the entire Adriatic region and an increase in the number of anticyclonic types relevant in Sirocco events. In contrast, for the summer season, an increase in the main anticyclonic Bora-related weather types is found in the ensemble over the northern Adriatic region.

Funder

Croatian-Swiss Research Program of the Croatian Science Foundation and the Swiss National Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3